Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Transp Res Rec ; 2677(4): 892-903, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2315483

ABSTRACT

Highway fatalities are a leading cause of death in the U.S. and other industrialized countries. Using highly detailed crash, speed, and flow data, we show highway travel and motor vehicle crashes fell substantially in California during the response to the COVID-19 pandemic. However, we also show the frequency of severe crashes increased owing to lower traffic congestion and higher highway speeds. This "speed effect" is largest in counties with high pre-existing levels of congestion, and we show it partially or completely offsets the "VMT effect" of reduced vehicle miles traveled on total fatalities. During the first eleven weeks of the COVID-19 response, highway driving decreased by approximately 22% and total crashes decreased by 49%. While average speeds increased by a modest 2 to 3 mph across the state, they increased between 10 and 15 mph in several counties. The proportion of severe crashes increased nearly 5 percentage points, or 25%. While fatalities decreased initially following restrictions, increased speeds mitigated the effect of lower vehicle miles traveled on fatalities, yielding little to no reduction in fatalities later in the COVID period.

2.
Transp Res Rec ; 2677(4): 396-407, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2314856

ABSTRACT

The recent COVID-19 pandemic has led to a nearly world-wide shelter-in-place strategy. This raises several natural concerns about the safe relaxing of current restrictions. This article focuses on the design and operation of heating ventilation and air conditioning (HVAC) systems in the context of transportation. Do HVAC systems have a role in limiting viral spread? During shelter-in-place, can the HVAC system in a dwelling or a vehicle help limit spread of the virus? After the shelter-in-place strategy ends, can typical workplace and transportation HVAC systems limit spread of the virus? This article directly addresses these and other questions. In addition, it also summarizes simplifying assumptions needed to make meaningful predictions. This article derives new results using transform methods first given in Ginsberg and Bui. These new results describe viral spread through an HVAC system and estimate the aggregate dose of virus inhaled by an uninfected building or vehicle occupant when an infected occupant is present within the same building or vehicle. Central to these results is the derivation of a quantity called the "protection factor"-a term-of-art borrowed from the design of gas masks. Older results that rely on numerical approximations to these differential equations have long been lab validated. This article gives the exact solutions in fixed infrastructure for the first time. These solutions, therefore, retain the same lab validation of the older methods of approximation. Further, these exact solutions yield valuable insights into HVAC systems used in transportation.

SELECTION OF CITATIONS
SEARCH DETAIL